Data unchained

SpaRTaN - MacSeNet
ITN Workshop
18.11.2016
1. Research data – introductory *quiz*

2. Collaborative working with code:
 - versioning, branching and metadata

3. Publishing your code:
 - from GitHub to Zenodo

4. Disseminating your code:
 - licences, citation and publication

5. Data Management Plans
1. Research data introductory quiz
What would you associate research data with specifically?

A. Texts
B. Images
C. Audiovisual data
D. Profit
E. Source code
F. Statistical data
G. Geodata
H. Genetic sequences
Several definitions are possible based on specific fields, institutions and organizations.

Research data are defined as **factual records** (numbers, texts, images and sounds), which are used as **principal sources for scientific research** and which are often recognized by the scientific community as being **necessary to validate research results**.

Organization for Economic Cooperation and Development (OECD)
What do you usually do with your research data?

A. Store on your computer or cloud service
B. Deposit in a repository
C. Share them through social networks
Why would you make your research data available in a repository?

A. To make them visible
B. To make them reusable
C. To make money
D. To be able to publish
E. To receive grants
Human Genome Project (1996)

The National Human Genome Research Institute's (NHGRI) policy for release and deposition of DNA sequence data was devised to make sequence data available to the research community as soon as possible for free, unfettered use.

Data were to be deposited in a public database within 24 hours of generating a sequence assembly of 2 kb or larger. Data release according to this practice is far more rapid than the standard scientific practice of releasing data only upon publication.

2. Collaborative working with code: versioning, branching and metadata
Git: Good practice for code management

Versioning
- Go back (to previous commits or versions)
- Keep track of evolutions (diff)

Decentralized collaboration
- Work in parallel (repository, branches)
- Every repro is a master
- Merge work with others

Source: https://github.com/hltfbk/Excitement-Open-Platform/wiki/Developers
So why?
- Free for open projects
- Extremely popular
- Available to everyone (c4science.ch is restricted to Swiss academic community)

⇒ We will work on the basis of the GitHub repository of the popular Scala language developed at EPFL.
1. Register (if necessary)
2. Select official Scala repository
3. Check the reuse licence
4. Fork
5. Select the branch 2.13x
6. Create a new file for metadata (e.g. metadata.md)

GitHub

Exercise

Learn how to clone a code and how to create metadata on your own new version of a repository on GitHub
How to create metadata?

Use the Dublin Core Element Schema (dces)

2. Fill up the 15 fields

- Format: in a new text file in the repository. Enter one field per line, starting with the field name (e.g. «title: »)

- Help: have a look at the scala repository, wikipedia, webpages, etc

- Some thoughts:
 - Is it a good idea to include the institution in the «creators» or not?
 - How to describe the current branch and version?
 - What format should you use for the date?
 - Are there other ambiguous points?
Metadata: Beyond Dublin Core

- 15 fields
- simple and easy
- not perfect.

- Refined terms (>50)
 - relation -> isPartOf, hasVersion
 - coverage -> temporal, spatial
- And Schemes
 - subjects: LCSH (Thesaurus)
 - languages: RFC1766 (en, de, fr)
 - Date: ISO8601 (YYYY-MM-DD)

And more - disciplinary specific metadata formats:
3. Publishing your code: from GitHub to Zenodo
Data repository

Why

Long-term accessibility and preservation
Increased discoverability and reuse of data

How to choose

- Data sharing practices within your community
- Repository’s specific features
 a) “try to find the one offering the best combination of ease-of-deposit, community uptake, accessibility, discoverability, value-added curation, preservation infrastructure, organizational persistence, and support for the data formats and standards you use”
 b) disciplinary/generic; economic model behind; proposed licenses; partnerships with publishers; …

- Check Re3data.org
- Ask your librarian 😊

Code repositories (including GitHub) are not intended nor equipped for long-term storage and preservation. **Data repositories, like Zenodo, are!**

Preserve

Cite

By archiving your codes and softwares in Zenodo you will get a DOI.

Discover

Data discoverability enhances the visibility and the impact of your research, and enables a broad dissemination of your research outputs.

Every (trusted) data repository helps you in making your data safely stored, easily citeable, and discoverable!

From GitHub to Zenodo: Why & How

Why

Preserve

Code repositories (including GitHub) are not intended nor equipped for long-term storage and preservation. **Data repositories, like Zenodo, are!**

Cite

By archiving your codes and softwares in Zenodo you will get a DOI.

Discover

Data discoverability enhances the visibility and the impact of your research, and enables a broad dissemination of your research outputs.

Exercise
When you write your software, you can make the work you share on GitHub citable: archive one of your GitHub repositories in Zenodo and assign it a DOI.

Preliminary steps

Use: sandbox.zenodo.org
Capture and publish your GitHub repository in Zenodo

1. Flip the switch
 - Select the repository you want to preserve, and toggle the switch below to turn on automatic preservation of your software.

2. Create a release
 - Go to GitHub and create a release. Zenodo will automatically download a .zip ball of each new release and register a DOI.

3. Get the badge
 - After your first release, a DOI badge that you can include in GitHub README will appear next to your repository below.

Repositories

If your organization's repositories do not show up in the list, please ensure you have enabled third party access to the Zenodo application. Private repositories are not supported.

You have no repositories on GitHub.
Go to GitHub and create your first or click Sync-button to synchronize latest changes from GitHub.
Capture and publish your GitHub repository in Zenodo

Create a new release
Fill in the release notes
Publish your release

Creating a new release triggers Zenodo into archiving your repository

Go to Upload
Select your Upload
...and edit metadata

Source: https://guides.github.com/activities/citable-code/
4. Disseminating your code: licences, citation and publication
They cover code, data, text and multimedia:
- CC-By.
 - Reuse, adapt, publish derivatives.
 - Obligation: cite the creator(s).
- Additional options:
 - Non-commercial, share alike, no derivs
 - Resulting in total 6 CC-By licences.
- CC0: almost public domain.

Other licenses are specific for code:
- GNU-GPL: Open Software.
- Apache2.0: smaller codes, libraries.
 - Premissive.
 - No share alike clause.
 - Preservation of copyright notice.
- BSD-3clause - similar.
DOI = Digital Object Identifier
... is a **unique** & **persistent** identifier

It concerns datasets, but not only (online documents like papers). Once a DOI is assigned to a dataset, this dataset is **published**. It is given by **repositories** (like Zenodo).

Advantages?
It gives credits to data producers.
Contract with DataCite: the provider (Zenodo) has to maintain access to the dataset.

Alternatives to DOI?
Handle System (system used by Datacite), Persistent URLs, ARKs, etc.
"The data paper is a ‘data-publishing’ product [...] that may appear in a data journal or any other journal. [...] Data articles focus on making data discoverable, interpretable, and reusable, rather than testing hypotheses or presenting new interpretations (by contrast with traditional journal articles).

“...which accept submissions that are primarily about the software, and not necessarily on new algorithms or new science. There is an expectation that the use of the software will enable new research to be carried out”.

5. Data Management Plan (DMP)
Data Management Plan (DMP)

Description of the data
- 1.1 Type of study
- 1.2 Type of data
- 1.3 Format and scale of the data

Data collection / generation
- 2.1 Methodologies for data collection / generation
- 2.2 Data quality and standards

Data management, documentation and curation
- 3.1 Managing, storing and curating data
- 3.2 Metadata standards and data documentation
- 3.3 Data preservation strategy and standards

Data security and confidentiality
- 4.1 Formal information/data security standards
- 4.2 Main risks to data security

Data sharing and access
- 5.1 Suitability for sharing
- 5.2 Discovery by potential users of the research data
- 5.3 Governance of access
- 5.4 The study team’s exclusive use of the data
- 5.5 Restrictions or delays to sharing
- 5.6 Regulation of responsibilities of users

Helpful tool to manage your data

Some funders require a DMP
All the icons are published under CC BY 3.0 license on thenounproject.com:

User attention by TMD
Repository by lastspark
Law by Marie Van den Broeck
Peer Evaluation By Duke Innovation Co-Lab
Friends by Les vieux garçons
Email by Lorena Salagre
DATA UNCHAINED

Data unchained by EPFL Library (2016) available at go.epfl.ch/FR2P

EPFL Library Team
Noémi Cobolet
Jan Krause
Raphaël Rey
Lorenza Salvatori

questions.bib@epfl.ch

library.epfl.ch
facebook.com/EPFL.library
youtube.com/epfllibrary
@EPFLlibrary